Application of Clustering Algorithm CLOPE to the Query Grouping Problem in the Field of Materialized View Maintenance
نویسندگان
چکیده
In recent years, materialized views (MVs) are widely used to enhance the database performance by storing pre-calculated results of resource-intensive queries in the physical memory. In order to identify which queries may be potentially materialized, database transaction log for a long period of time should be analyzed. The goal of analysis is to distinguish resource-intensive and frequently used queries collected from database log, and optimize these queries by implementation of MVs. In order to achieve greater efficiency of MVs, they were used not only for the optimization of single queries, but also for entire groups of queries that are similar in syntax and execution results. Thus, the problem stated in this article is the development of approach that will allow forming groups of queries with similar syntax around the most resource-intensive queries in order to identify the list of potential candidates for materialization. For solving this problem, we have applied the algorithm of categorical data clustering to the query grouping problem on the step of database log analysis and searching candidates for materialization. In the current work CLOPE algorithm was modified to cover the introduced problem. Statistical and timing indicators were taken into account in order to form the clusters around the most resource intensive queries. Application of modified algorithm CLOPE allowed to decrease calculable complexity of clustering and to enhance the quality of formed groups.
منابع مشابه
افزایش سرعت نگهداری افزایشی دید با استفاده از الگوریتم فاخته
Data warehouse is a repository of integrated data that is collected from various sources. Data warehouse has a capability of maintaining data from various sources in its view form. So, the view should be maintained and updated during changes of sources. Since the increase in updates may cause costly overhead, it is necessary to update views with high accuracy. Optimal Delta Evaluation method is...
متن کاملA Solution to View Management to Build a Data Warehouse
Several techniques exist to select and materialize a proper set of data in a suitable structure that manage the queries submitted to the online analytical processing systems. These techniques are called view management techniques, which consist of three research areas: 1) view selection to materialize, 2) query processing and rewriting using the materialized views, and 3) maintaining materializ...
متن کاملبهبود الگوریتم انتخاب دید در پایگاه داده تحلیلی با استفاده از یافتن پرس وجوهای پرتکرار
A data warehouse is a source for storing historical data to support decision making. Usually analytic queries take much time. To solve response time problem it should be materialized some views to answer all queries in minimum response time. There are many solutions for view selection problems. The most appropriate solution for view selection is materializing frequent queries. Previously posed ...
متن کاملMaintaining large update batches by restructuring and grouping
Materialized views defined over distributed data sources can be utilized by many applications to ensure better access, reliable performance, and high availability. Technology for maintaining materialized views is thus critical for providing upto-date results since a stale view extent may not help or even mislead these applications. State-of-the-art incremental view maintenance requires OðnÞ or ...
متن کاملAn Approach for Selection and Maintenance of Materialized View in Data Warehousing
Quick response time and accuracy are important factors in the success of any database. In large databases particularly in distributed database, query response time plays an important role as timely access to information and it is the basic requirement of successful business application. A data warehouse uses multiple materialized views to efficiently process a given set of queries. The material...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CIT
دوره 24 شماره
صفحات -
تاریخ انتشار 2016